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Abstract—Reported researches on smart charging methods
have the disadvantages of low calculation efficiency or have
not simultaneously taken the three-phase imbalance, voltage and
power flow constraints into account. It is an important topic
to improve the computational speed to meet the online rolling
optimization requirement for EVCC problems. In this paper,
the branch power flow equations of balanced and unbalanced
distribution system are derived. The linearization methods for
the nonlinear terms of the branch power flow equations are
proposed. Two stages linear programming (LP) is introduced for
EVCC to minimize the total charging costs of the holders where
three-phase imbalance, charging demand, voltage and power
flow constraints have been taken into account. Via ignoring the
nonlinear terms of the branch power flow equations, the first
stage LP is formulated to calculate the estimated branch power
and node voltages as the initial points for linearizing the nonlinear
terms of branch power flow equations. The second stage LP is
formulated to calculate the optimal charging power using the
linearized branch power flow equations. Four case studies show
that the proposed method without the compromise of precision
is significantly faster than state-of-the-art works with respect to
the computational speed.

Index Terms—Branch flow, distribution system, coordinated
charging, electric vehicles (EVs), linear programming.

NOMENCLATURE

A. Sets:

N Buses of distribution system excluding the root
node.

ε Line segments of distribution system.
Hk Child nodes of node k.

B. Constants:

rik Resistance of line segment (i, k) for balanced dis-
tribution system.

xik Reactance of line segment (i, k) for balanced distri-
bution system.

zik Impedance of line segment (i, k) for balanced dis-
tribution system.

rik Resistance matrix of line segment (i, k) for unbal-
anced distribution system, a 3× 3 matrix.
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xik Reactance matrix of line segment (i, k) for unbal-
anced distribution system, a 3× 3 matrix.

zik Impedance matrix of line segment (i, k) for unbal-
anced distribution system, a 3× 3 matrix.

pd
k0 Active power of constant power load at node k for

balanced distribution system.
qd
k0 Reactive power of constant power load at node k

for balanced distribution system.
pd
kz0 Active power of constant impedance load at node

k for balanced distribution system when voltage
magnitude is 1.0 p.u.

qd
kz0 Reactive power of constant impedance load at node

k for balanced distribution system when voltage
magnitude is 1.0 p.u.

pd
k0 Active power of constant power load at node k for

unbalanced distribution system, a 3× 1 vector.
qd
k0 Reactive power of constant power load at node k

for unbalanced distribution system, a 3× 1 vector.
pd
kz0 Active power of constant impedance load at node k

for unbalanced distribution system, a 3× 1 vector.
qd
kz0 Reactive power of constant impedance load at node

k for unbalanced distribution system, a 3×1 vector.
K Total number of EVs with three-phase charging

mode.
M Total number of EVs with single-phase charging

mode.
t1 Optimization start time.
tmax Optimization end time.
β Connecting phase for EVs with single-phase charg-

ing mode.
PEVk,max Charging power for the kth EV with three-phase

charging mode.
PEVm,max Charging power for the mth EV with single-phase

charging mode.
∆t Time interval of optimization.
η Charging efficiency.
Eini
k Initial energy of the kth EV with three-phase charg-

ing mode.
Eini
m Initial energy of the mth EV with single-phase

charging mode.
Ecap
k Battery capacity of the kth EV with three-phase

charging mode.
Ecap
m Battery capacity of the mth EV with single-phase

charging mode.
tks Charging start time for the kth EV with three-phase

charging mode.
tke Charging end time for the kth EV with three-phase

charging mode.
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tms Charging start time for the mth EV with single-phase
charging mode.

tme Charging end time for the mth EV with single-phase
charging mode.

Umin Lower limit for voltage magnitude square.
Umax Upper limit for voltage magnitude square.
Pmax
ik,α,t Maximum active power of line segment (i, k) for

phase α in time interval t.
Pmax

T,α,t Maximum active power of distribution transformer
for phase α in time interval t.

Pik0 Initial active power of line segment (i, k) for lin-
earization in balanced distribution system.

Qik0 Initial reactive power of line segment (i, k) for
linearization in balanced distribution system.

Sik0 Initial apparent power of line segment (i, k) for
linearization in balanced distribution system.

Vi0 Initial voltage of node i for linearization in balanced
distribution system.

P ik0 Initial active power of line segment (i, k) for lin-
earization in unbalanced distribution system, a 3×1
vector.

Qik0 Initial reactive power of line segment (i, k) for
linearization in unbalanced distribution system, a
3× 1 vector.

A A constant real number 3× 3 matrix.
B A constant real number 3× 3 matrix.

C. Variables:

Sik Sending end apparent power of line segment (i, k)
for balanced distribution system.

|Sik| Mode of Sik.
Pik Sending end active power of line segment (i, k) for

balanced distribution system.
Qik Sending end reactive power of line segment (i, k)

for balanced distribution system.
Sd
k Apparent power of load at node k for balanced

distribution system.
Vk Voltage of node k for balanced distribution system.
|Vk| Mode of Vk.
pd
k Active power of load at node k for balanced distri-

bution system.
qd
k Reactive power of load at node k for balanced

distribution system.
Uk Voltage magnitude square of node k for balanced

distribution system.
cvik (P,Q) Square of voltage loss for line segment (i, k) for

balanced distribution system.
cpik (P,Q) Square of active power loss for line segment (i, k)

for balanced distribution system.
cqik (P,Q) Square of reactive power loss for line segment (i, k)

for balanced distribution system.
Sik Sending end apparent power of line segment (i, k)

for unbalanced distribution system, a 3× 1 vector.
|Sik| Mode of Sik, a 3× 1 vector.
P ik Sending end active power of line segment (i, k) for

unbalanced distribution system, a 3× 1 vector.
Qik Sending end reactive power of line segment (i, k)

for unbalanced distribution system, a 3× 1 vector.

V k Voltage of node k for unbalanced distribution sys-
tem, a 3× 1 vector.

|V k| Mode of V k, a 3× 1 vector.
Uk Square of voltage magnitude of node k for unbal-

anced distribution system, a 3× 1 vector.
pd
k Active power of load at node k for unbalanced

distribution system, a 3× 1 vector.
qd
k Reactive power of load at node k for unbalanced

distribution system, a 3× 1 vector.
Slik Power losses across line segment (i, k) for unbal-

anced distribution system, a 3× 1 vector.
cuik (P,Q)Square of voltage loss for line segment (i, k) for

unbalanced distribution system, a 3× 1 vector.
cpik (P,Q)Square of active power loss for line segment (i, k)

for unbalanced distribution system, a 3× 1 vector.
cqik (P,Q)Square of reactive power loss for line segment (i, k)

for unbalanced distribution system, a 3× 1 vector.
ρ (t) Power price in time interval t.
PEVk,a,t Charging power of phase a in time interval t for the

kth EV with three-phase charging mode.
PEVk,b,t Charging power of phase b in time interval t for the

kth EV with three-phase charging mode.
PEVk,c,t Charging power of phase c in time interval t for the

kth EV with three-phase charging mode.
PEVk,t Charging power of the kth EV with three-phase

charging mode in time interval t.
PEVm,β,t Charging power of the mth EV with single-phase

charging mode in time interval t.
Un,α,t Voltage magnitude square of node n phase α in time

interval t.
Pik,α,t Power of the line segment (i, k) for phase α in time

interval t.
PT,α,t Power of the distribution transformer for phase α in

time interval t.
x A 3× 1 vector.
y A 3× 1 vector.

I. INTRODUCTION

WORLDWIDE energy sectors face critical challenges
with regard to the security of power supply, envi-

ronmental impacts, and energy costs. Energy investments are
trending towards innovations to improve both the energy
efficiency and the environmental friendliness. Compared with
traditional vehicles, electric vehicles (EVs) present more sig-
nificant benefits due to the capability of the non-reliance on oil,
reducing harmful gas emissions, and lowering fluctuations of
renewable sources. Currently, many countries have accelerated
the development of distributed generators (DGs) and EVs.
Consequently, some hot research topics come to the fore, in-
cluding the impact of DGs and EVs on the power system [1]–
[3], the optimal operation of distribution networks [4], and
the active distribution network technology [5]–[7]. However,
the uncoordinated charging of massive EVs could significantly
increase network losses, overload distribution transformers or
lines, reduce the energy efficiency, and lower system voltages.
Whereas smart charging of EVs can significantly improve both
economy and reliability benefits of the distribution system.
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Generally, researches on the coordinated charging of EVs
can be divided into the distributed and centralized methods.
The distributed coordinated charging mainly uses the fuzzy
mathematics theory [8], sensitivity analysis [9], and iterative
method [10]. The centralized coordinated charging generally
utilizes the sensitivity analysis [11], [12] and the optimization
techniques [13]–[20].

When the objective function is to minimize the total
charging costs of holders, distributed EV charging scheduling
cannot be applied, because the voltage magnitude and branch
power constraints cannot be taken into account. For example,
the electricity price is low in peak wind or solar power
time and high in peak load time. If a large number of EVs
are scattered in different nodes of distribution network, such
as EVs in residential distribution network, it is difficult to
take voltage magnitude and branch power constraints into
account if distributed charging is used to tracking the low
electricity price. As a result, safe and economic operation of
distribution network cannot be guaranteed. Therefore, central-
ized coordinated charging is preferable. However, centralized
coordinated charging is a large-scale non-linear optimization
problem. It is very difficult to solve because of high dimension
of optimization variables and large number of constraints.
With the popularization of EVs and the progress of battery
technology, a large number of EVs will adopt fast charging
mode. As a result, optimization time interval must be greatly
reduced, and the dimension of optimization variables, number
of constraints will increase dramatically. How to improve the
computational speed to meet the online rolling optimization
requirement is an important topic worthy of study. That is,
the computational time is very important in this problem.

In [11], [12], a real-time smart load management strategy
is proposed for the coordinated charging of EVs by using the
sensitivity analysis technique. However, the control variables
are the charging locations rather than the charging power of
EVs. It is still challenging to ensure that the EVs can be
fully charged. As the coordinated charging of EVs is a large
scale optimization problem, many techniques are proposed to
improve the computational speed. In [13], a linear constrained
convex quadratic programming is formulated to iteratively
correct nodal voltages using the power flow calculation. The
objective function is to minimize the power losses, while
the constraints on voltage magnitudes and thermal loadings
of lines/transformers are ignored. However, if the objective
function is sensitive to nodal voltages, such as minimizing the
total charging costs, the method developed in [13] cannot be
applicable.

In [14], [15], with inequality constraints on nodal voltage
and thermal loadings of transformers and lines linearized, a LP
for the coordinated charging of EVs is proposed to maximize
the total charging energy. However, the deviation of lineariza-
tion of this method is relatively large. Moreover, this method
cannot be applicable to the nonlinear objective function, which
is not linearly related to the charging power of EVs, such
as the minimization of total power supply. In [16], based on
Cartesian coordinate power flow equations, a mixed integer
LP of coordinated charging of EVs is proposed to maximize
the revenue of power corporations with linearized constraints.

However, many auxiliary variables and constraints are used
to linearize inequality constraints on both the voltage and
current, which can significantly increase the complexity of the
developed model. Last but not the least, the charging location
rather than the charging power is optimized. The formulated
mixed integer LP is much more difficult to solve than the LP.
In [17], a quadratic programming is proposed to optimize the
charging and discharging power of EVs considering the time-
of-use power price and battery degradation costs. However, the
electricity price is proportional to charging power and other
conventional load. In [18], a coordination strategy for optimal
charging of EVs is developed by considering the congestion
of the distribution system. In [19], a quadratic programming is
formulated to minimize the power losses with load balancing.
In [20], load factor, load variance, and network losses are
demonstrated to be equivalent under certain conditions. As
an outcome, minimizing network losses can be transformed
to minimizing the load factor or load variance, which can
reduce the computational complexity. However, the constraints
on nodal voltages or thermal loadings of transformers and
lines are not considered in the aforementioned models. When
there are massive EVs connected to the distribution system,
the constraints on nodal voltages and/or thermal loadings of
transformers and lines can be really a factor that limits the
charging power of EVs. Though neglecting the constraints on
nodal voltages and/or thermal loadings of transformers and
lines may significantly improve the computational speed, it
may also make the solution to the charging power of EVs
unfeasible. When the objective function is to minimize the
total charging costs, the constraints on voltages magnitudes
and/or thermal loadings of transformers/lines can be a factor
that limits the charging power of EVs. As a result, the
aforementioned four methods cannot be applicable.

In [21], the influence of charging on the heating and life
span of distribution transformer is analyzed. A non-linear
model is constructed. However, none of the references [1]–
[20] have constructed a non-linear model for transformer
heating. Instead, a simple linear inequality with simple branch
power or current is formulated. In [22], stochastic analysis
is used to analyze the impact of charging randomness on
distribution network. At present, for EVCC problem, the
rolling optimization is generally used to take into account the
uncertainty of EVs and load forecasting.

To cope with the inefficiency of calculation, this paper
derives the branch flow equations of balanced and unbal-
anced distribution system. Moreover, the three-phase imbal-
ance, voltage constraints, and power flow constraints are
also considered. The coordinated charging model of EVs is
established to minimize total charging costs of holders. The
contributions of this paper are as follows. 1) We propose
a method to linearize the non-linear terms in branch power
flow equations of balanced and unbalanced distribution system
and apply it to solve the EVCC problem. As a result, the
computing time is greatly reduced. 2) The conventional load
in branch power flow equations includes constant impedance
and constant power load. 3) We have proposed how to compute
the initial point of linearization. 4) The capabilities of the
proposed method-fast calculation speed and high accuracy are
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verified by four simulation cases and compared with recent
similar work.

The organization of this paper is as follows. Branch flow
equations of balanced and unbalanced distribution systems are
introduced in Section II. The coordinated charging model of
EVs is formulated in Section III-C. A fast solving method
is described in Section V. Both the accuracy and computa-
tional efficiency of the developed method are discussed in
Section VI. Section VII concludes the paper.

II. EVCC PROBLEM

The EVCC problem is to determine an EV battery charging
schedule so that distribution system operates with optimal
cost and satisfies operational constraints. In this paper, the
following descriptions are assumed [16].

1) The EV batteries must be charged in a given period of
time, which is divided into several time intervals.

2) The energy required by each battery is known at the
beginning of the time period.

3) The EVs have communication devices that allow the
distribution system operator to control the charging power of
the batteries. That control can be carried out in each time
interval of the time period.

Operational constraints, such as voltage magnitude limits,
power generation limits, and maximum circuit power must be
satisfied. The optimal charging schedule defines the charging
power of each EV battery in each time interval. The estimated
arrival and departure times for the EVs are considered using
parameters tks and tke, respectively. These parameters, as
well as the initial charge state of a battery (Eini

k ), can be
obtained using estimation techniques applied to EVs, such as
those in [23]–[25]. The mathematical model considers these
parameters, allowing the EV to be charged only during the
time interval between arrival and departure.

III. NLP MODEL FOR THE EVCC PROBLEM

A. Branch Flow Equations in Balanced Distribution Systems

The distribution system with symmetrical parameters is
referred as balanced distribution system while that with three-
phase conductors not transposed or with large load differ-
ences among three-phase is referred as unbalanced distribution
system. Balanced distribution system can be represented by
single-phase model while unbalanced distribution system must
be represented by a three-phase model.

To improve the computational speed, models of the three-
phase balance and unbalanced distribution systems are con-
structed by using branch flow equations. Given an N+1 bus
distribution system with a tree topology, i.e., a radial network
without loops between branches, the root bus is denoted by
N + 1 and the remaining N buses of the system are denoted
by the set N = {1, 2, · · · , N}. The edge-set that represents
the set of distribution line segments (including conductors
for single-, two-, and three-phase circuits) is denoted by
ε ⊆ {N ∪ {N + 1}}×{N ∪ {N + 1}} with (i, k) ∈ ε, if there
is a distribution line segment between bus i and bus k (bus i
closer to the feeder). Note that all the edges are directed so
that we can get (i, k) ∈ ε⇒ (k, i) /∈ ε. The Π type equivalent

= +jik ik ikz r x = +jkm km kmz r x

i k m
ikS

kmS

d d djk k ks p q 

+

-

iV

+

-

mV

+

-

kV

Fig. 1. Branch flow of distribution systems.

circuit is used to represent the line segments. The impedance
of the line segment (i, k) is given by zik = rik + jxik. The
demand at bus k considering the shunt capacitance of the line
is denoted by sd

k = pd
k + jqd

k. Considering the circuit shown
in Fig. 1, both the voltage drop and power flow equations are
formulated by using the notation and orientation.

Let Hk = {j |(k, j) ∈ ε} be the set of buses downstream
of bus k. The total power flow Sik ∈ C transferred through
the sending end of distribution line segment (i, k) is given by:

Sik =
∑
j∈Hk

Skj + Sd
k+zik

|Sik|2

|Vi|2
(1)

where the line power flow Sik is always relative to the sending
end voltage, Vi = |Vi|∠θi, of the distribution line segment.
The voltage of bus k based on the upstream bus i is given by:

Vk = Vi − zik
Pik − jQik

V ∗i
(2)

where the root node voltage is fixed with VN+1 = V s =
|V s|∠0 for a constant |V s|. The dependence on the phase
angles in (2) is removed by taking the product of each side
of (2) with its conjugate. Thus, the branch flow equations for
an N + 1 bus network is given by:

VN+1 = V s = |V s|∠0 (3a)

|Vk|2 = |Vi|2 − 2 (rikPik + xikQik) + |zik|2
|Sik|2

|Vi|2
(3b)

Pik =
∑
j∈Hk

Pkj + pd
k + rik

|Sik|2

|Vi|2
(3c)

Qik =
∑
j∈Hk

Qkj + qd
k + xik

|Sik|2

|Vi|2
(3d)

The power demand is usually a mix of constant power and
constant impedance load. Thus, it can be expressed as:

pd
k = pd

k0 + pd
kz0 |Vk|

2 (4a)

qd
k = qd

k0 + qd
kz0 |Vk|

2 (4b)

According to (3)–(4) and given Ui = |Vi|2, the branch flow
equations of the three-phase balanced distribution system can
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be simplified as:

UN+1 = |V s|2 = Us (5a)
Uk = Ui − 2 (rikPik + xikQik) + cvik (P,Q) , k ∈ N (5b)

Pik =
∑
j∈Hk

Pkj + pd
k + cpik (P,Q), k ∈ N (5c)

Qik =
∑
j∈Hk

Qkj + qd
k + cqik (P,Q), k ∈ N (5d)

pd
k = pd

k0 + pd
kz0Uk, k ∈ N (5e)

qd
k = qd

k0 + qd
kz0Uk, k ∈ N (5f)

where cvik (P,Q) = |zik|2|Sik|2
/
|Vi|2, cpik (P,Q) =

rik|Sik|2
/
|Vi|2, and cqik (P,Q) = xik|Sik|2

/
|Vi|2.

B. Branch Flow in Unbalanced Distribution Systems

In the actual distribution system, the overhead lines are
usually not transposed. Thus, the off diagonal elements of
the line mutual impedance matrix are not equal any more.
Moreover, the three-phase loads connected to each node are
usually not equal. As a result, the three-phase parameters of the
distribution system are asymmetrical. For each line segment
(i, k) ∈ ε, the voltage equation is given by:

V k = V i − zik [(P ik − jQik)∅V ∗i ] (6)

where zik ∈ C3×3, V k = [Vka, Vkb, Vkc]
T, V i =

[Via, Vib, Vic]
T, P ik = [Pika, Pikb, Pikc]

T, and Qik =
[Qika, Qikb, Qikc]

T. The symbol of ∅ denotes the element-
wise division.

Unlike the per-phase equivalent case, both sides of (6)
cannot remove the dependence on phase angles by multiplying
the complex conjugate. This is due to the fact that there is a
coupling between phases that arises from the cross-product of
the three-phase equation for the phase voltage and line current.
To address this problem, it can be observed that voltage
magnitudes between phases are similar, i.e., |Via| ≈ |Vib| ≈
|Vic| [26] and the unbalance on each phase are not that severe.
Thus, voltage magnitudes are assumed to be approximately
equal. The unbalance of the three-phase angle α is relatively
small (typically within 1◦ ∼ 3◦). Thus, we ignore α and
assume that the three-phase voltage at each node is equal.
By multiplying both sides of (6) with its conjugate vector, the
voltage equation in (5b) can be updated as:

|V k|2 = |V i|2 − 2 (r̃ikPik + x̃ikQik) + cuik (P ,Q) , k ∈ N
(7)

a =
[
1 e−j2π/3ej2π/3

]T
(8)

r̃ik = Re
{
aaH}� rik + Im

{
aaH}� xik (9)

x̃ik = Re
{
aaH}� xik − Im

{
aaH}� rik (10)

cuik (P ,Q) = [zik (S∗ik∅V ∗i )]� [z∗ik (Sik∅V i)] (11)

where the symbol of � denotes the element-wise multiplica-
tion.

We assume that the three-phase voltages magnitudes of
each node are equal in order to obtain a constant equivalent
resistance matrix r̃ik and reactance matrix x̃ik, thus simpli-
fying the voltage equation. This hypothesis is only used to
derive Eq. (7) and is not used for other purposes. Eq. (7)
shows that when the three-phase power of each branch is
unequal, the three-phase voltages magnitudes of each node
are unequal as well. Thus, Eq. (7) simulates the three-phase
unbalanced distribution network. Eq. (7) has high accuracy,
because the unbalance of three-phase voltage of each node
in the actual distribution network is very small. The voltage
imbalance limit in the distribution system is that the negative
sequence voltage divided by the positive sequence voltage
must be below 2% which is required by the National Electrical
Manufacturers Association (NEMA). In the actual distribution
network, the imbalance of three-phase voltage is very small
while the imbalance of three-phase power may be large.

Branch flow equations in (5c) and (5d) can be updated as:

P ik =
∑
j∈Hk

P kj + pd
k + cpik (P ,Q), k ∈ N (12)

Qik =
∑
j∈Hk

Qkj + qd
k + cqik (P ,Q), k ∈ N (13)

where cpik (P ,Q) = Re {(Sik∅V i)� (V i − V k)},
cqik (P ,Q) = Im {(Sik∅V i)� (V i − V k)}

Power demand equations in (5e) and (5f) can be updated
as:

pd
k = pd

k0 + pd
kz0Uk, k ∈ N (14)

qd
k = qd

k0 + qd
kz0Uk, k ∈ N (15)

The three-phase voltage of the root node in (5a) is updated
as:

UN+1 = |V s| � |V s| (16)

C. Model for EVCC

The objective function for the coordinated charging model
of EVs is to minimize the total charging costs of holders, given
by:

J = min

tmax∑
t=t1

ρ (t)

(
K∑
k=1

PEVk,t +

M∑
m=1

PEVm,β,t

)
∆t (17)

Constraints on the charging power of each EV with the
three-phase charging mode are formulated by:

0 ≤ PEVk,t ≤ PEVk,max (18)

PEVk,a,t = PEVk,b,t = PEVk,c,t =
PEVk,t

3
(19)

The constraint on the charging power of each EV with the
single-phase charging mode is formulated by:

0 ≤ PEVm,β,t ≤ PEVm,max (20)
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Constraints on the power demand of each EV with the three-
and single-phase charging modes are given by:

η

tke∑
t=tks

PEVk,t∆t = Ecap
k − E

ini
k (21)

η

tme∑
t=tms

PEVm,β,t∆t = Ecap
m − Eini

m (22)

The rates of charging power constraints are considered
in Eqs. (18)–(20), while the SOC constraints are indirectly
considered in Eqs. (21) and (22). The discharging mode
(Vehicle to Grid) can be added to this work as well. To do
this, it is only needed to modify Eqs. (18)–(22). However,
since the discharging mode can reduce the battery life span,
it is not considered in this paper.

The constraint on the nodal voltage of the distribution
system is given by:

Umin ≤ Un,α,t ≤ Umax (23)

The constraint on the thermal loading of each line is given
by:

0 ≤ Pik,α,t ≤ Pmax
ik,α,t (24)

The constraint on the thermal loading of each transformer
is given by:

0 ≤ PT,α,t ≤ Pmax
T,α,t (25)

For the balanced distribution system, the objective function
is formulated in (17). Equality constraints are formulated
in (5a)–(5f), (19), and (21). Inequality constraints are formu-
lated in (20) and (23)–(25). For the unbalanced distribution
system, the objective function is formulated in (17). Equality
constraints are formulated in (7), (12)–(16), (19), and (21)–
(22). Inequality constraints are formulated in (18), (20)
and (23)–(25).

The charging power of EVs is constrained by the voltage
magnitude and branch power. For different distribution net-
work models, the function relationship between the voltage
magnitude, branch power, and charging power is different,
which leads to different objective function values, i.e., total
charging costs of holders. If the distribution network is bal-
anced and all EVs are charged with the three–phase mode, the
balanced distribution network model can be used. Otherwise,
the unbalanced distribution network model must be adopted.

IV. LP MODEL FOR THE EVCC PROBLEM

In the formulated NLP EVCC problem, only the model of
distribution network is nonlinear, while other parts are linear.
We propose a method to linearize the model of balanced
and unbalanced distribution network. However, for the charge
scheduling problem, the initial point of linearizing is unknown
in advance. We propose a method to calculate the initial point
of linearizing. The linearizing process is closely associated
with the charging scheduling model.

The advantage of LP is that it can be solved quickly by
using sophisticated solver. A mixed-integer LP is formulated
in [16]. However, polar coordinate power flow equations are
adopted. While in our paper, branch power flow equations are

utilized. The variable number is much less than that in [16].
Further, non-linear inequalities are linearized by introducing
new auxiliary variables in [16]. As a result, variables have
sharply increased. While in our paper, we linearize the non-
linear terms in branch power flow equations by using Taylor
expansion and the variable number keeps constant.

A. Linearization of Branch Flow Equations in the Balanced
Distribution System

In (5a)–(5f), only cvik (P,Q), cpik (P,Q), and cqik (P,Q) are
nonlinear terms. To fast solve the developed model, it should
be linearized. Let:

hik (P,Q) =
|Sik|2

|Vi|2
=
P 2
ik +Q2

ik

|Vi|2
(26)

cvik (P,Q) = |zik|2hik (P,Q) (27a)
cpik (P,Q) = rikhik (P,Q) (27b)
cqik (P,Q) = xikhik (P,Q) (27c)

hik (P,Q) can be linearized as:

hik (P,Q) ≈ 2Pik0Pik + 2Qik0Qik − |Sik0|2

|Vi0|2
(28)

B. Linearization of Branch flow Equations in the Unbalanced
Distribution System

1) Linearization of the Nonlinear Term in Voltage Equa-
tions: Let āi =

[
1, ej2π/3e−j2π/3

]T ∅ |V i|, then the nonlinear
term of the voltage equation can be expressed as:

cuik (P ,Q) = [zik (S∗ik∅V ∗i )]� [z∗ik (Sik∅V i)]

≈ [zik (S∗ik � ā∗i )]� [z∗ik (Sik � āi)]
(29)

A new branch impedance matrix is defined as:

z̄ik = zikdiag (ā∗i ) = r̄ik + jx̄ik (30)

Then, (29) can be rewritten as:

cuik (P ,Q) = (r̄ikP ik)� (r̄ikP ik) + (x̄ikQik)� (x̄ikQik)

+ (x̄ikP ik)� (x̄ikP ik) + (r̄ikQik)� (r̄ikQik)

+ 2 (r̄ikP ik)� (x̄ikQik)−2 (x̄ikP ik)� (r̄ikQik)
(31)

The linearization of cuik (P ,Q) is defined as:

cuik (P ,Q) ≈ upik (P ik0,Qik0) (P ik − P ik0)

+ uqik (P ik0,Qik0) (Qik −Qik0) + cuik (P ik0,Qik0)
(32)

According to (31), the partial derivatives are given by:

upik =
∂cuik
∂P ik

= hxx (r̄ik,P ik) + hxx (x̄ik,P ik)

+ 2hxy (r̄ik, x̄ik,P ik,Qik)

− 2hxy (x̄ik, r̄ik,P ik,Qik)

(33)

uqik =
∂cuik
∂Qik

= hxx (r̄ik,Qik) + hxx (x̄ik,Qik)

+ 2hxy (x̄ik, r̄ik,Qik,P ik)

− 2hxy (r̄ik, x̄ik,Qik,P ik)

(34)
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where functions hxx and hxy are respectively given by:

hxx (A,x) = 2diag (Ax) A (35)

hxy (A,B,x,y) = diag (By) A (36)

2) Linearization of the Nonlinear Term in Power Equations:
The power loss across line segment (i, k) is given by:

Slik = (Sik∅V i)� [zik (S∗ik∅V ∗i )] (37)

Another branch impedance matrix is redefined as:

ẑik = r̂ik + jx̂ik = zik �
(
āiā

H
i

)
(38)

According to (38), by separating the real part from the
imaginary one, it can be obtained:

r̂ik = Re
{
āiā

H
i

}
� rik − Im

{
āiā

H
i

}
� xik (39)

x̂ik = Re
{
āiā

H
i

}
� xik + Im

{
āiā

H
i

}
� rik (40)

For the sake of simplicity, (37) can be rewritten as:

Slik = (P ik + jQik)� [ẑik (P ik − jQik)] (41)

According to (39)–(41), by separating the active power from
the reactive power, it can be obtained:

cpik (P ,Q) = real
(
Slik

)
= P ik � (r̂ikP ik + x̂ikQik)

+ Qik � (r̂ikQik − x̂ikP ik)
(42)

cqik (P ,Q)= imag
(
Slik

)
=P ik � (x̂ikP ik − r̂ikQik)

+ Qik � (r̂ikP ik + x̂ikQik)
(43)

The linearization of cpik (P ,Q) and cqik (P ,Q) are respec-
tively defined as:

cpik (P,Q)≈fpik (P ik0,Qik0) (P ik − P ik0)

+f qik (P ik0,Qik0) (Qik−Qik0)+cpik (P ik0,Qik0)
(44)

cqik (P,Q)≈gpik (P ik0,Qik0) (P ik − P ik0)

+gqik (P ik0,Qik0) (Qik−Qik0)+cqik (P ik0,Qik0)
(45)

Partial derivative terms in (44) and (45) are respectively
given by:

fpik =
∂cpik
∂P ik

= h̃xx (r̂ik,P ik) + h̃xy (x̂ik,P ik,Qik)

− h̃yx (x̂ik,Qik,P ik)

(46)

f qik =
∂cpik
∂Qik

= h̃xx (r̂ik,Qik)− h̃xy (x̂ik,Qik,P ik)

+ h̃xy (x̂ik,P ik,Qik)

(47)

gpik =
∂cqik
∂P ik

= h̃xx (x̂ik,P ik)− h̃xy (r̂ik,P ik,Qik)

+ h̃yx (r̂ik,Qik,P ik)

(48)

Ignoring the nonlinear terms in the branch 

power flow equations, formulate the 

simplified LP for EVCC

Solve the simplified LP using sophisticated 

solver and output the results of branch 

power flows and voltage as the initial point 

for linearization

Linearizing the nonlinear terms in the 

branch power flow equations, formulate the 

approximate LP for EVCC

 solve the approximate LP for EVCC using 

sophisticated solver and output the results 

for EVCC

Fig. 2. Schematic of the proposed fast solving method.

33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

18 19 20 21

17

22 23 24

25 26 27 28 29 30 31 32

Fig. 3. IEEE 33-node distribution system.

gqik =
∂cqik
∂Qik

= h̃xx (x̂ik,Qik) + h̃xy (r̂ik,Qik,P ik)

− h̃yx (r̂ik,P ik,Qik)

(49)

where functions h̃xx, h̃xy , and h̃yx are respectively given by:

h̃xx (A,x) = diag (Ax) + diag (x) A (50)

h̃xy (A,x,y) = diag (Ay) (51)

h̃yx (A,y,x) = diag (y) A (52)

V. FAST SOLVING METHOD

The accuracy of linearization is closely associated with the
initial point. However, it is challenging to know the initial
point since it is not the actual operation point. Toward this
end, the nonlinear terms of the voltage cuik (P ,Q), active
power cpik (P ,Q), and reactive power cqik (P ,Q) are first
ignored. The simplified LP for coordinated charging of EVs
is formulated. Then, the sophisticated LP solver is used to
solve this simplified LP. The output is taken as the initial
point of linearization. Whereafter, the approximated LP for
coordinated charging of EVs is formulated. Finally, the so-
phisticated LP solver is used to solve this approximated LP
once again and output the optimal charging power of EVs.
Losses of the voltage, active power, and reactive power are
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much less than the corresponding linear terms in branch flow
equations. In addition, the linearization is performed at the
initial point that is the result of the simplified linear model.
Thus, the deviation is relatively small. That is, the accuracy
of the proposed linearization strategy can be guaranteed. The
computational speed of the proposed method can also be
guaranteed since both formulated models belong to the LP
problem. A schematic diagram of the proposed fast solving
method is shown in Fig. 2.

VI. CASE STUDIES

In the simulation cases, noon or night are chosen as the
charging periods since these time periods are in coincidence
with the charging habits of most EV holders.

A. Case 1

1) Simulation Conditions: Fig. 3 shows the IEEE 33-node
medium voltage (MV) distribution system to test the capability
of the proposed method. The impedance matrix of transmission
lines is shown in Table I. In this system, node 33 is taken as
the slack node and its voltage is kept to be 1.00 p.u.. The rest
of nodes are taken as PQ nodes. The base conventional load at
each node is shown in Table II. The constant power load model
is deployed. There are four parking lots of EVs connected at
nodes 17, 21, 24, and 32, respectively. There are 40 EVs in
each parking lot. The single-phase base power and voltage
are chosen to be 1000/3 kVA and 12.66/

√
3 kV, respectively.

The back forward sweep method is used to calculate the power
flow.

Other simulation conditions are set as follows:
1) All EV owners are willing to participate in the coordi-

nated charging. The charging power of each EV is fully con-
trollable. The charging time period is between 12:00∼14:00.

2) The conventional load at each node is equal to the base
load between 12:00∼13:00 and that of 80% base load between
13:00∼14:00. The power factor is 0.95.

3) The power prices in the time range of 12:00∼13:00 and
13:00∼14:00 are 0.8 and 0.4 Yuan/kWh, respectively.

4) All EVs adopt the three-phase charging mode.
5) The charging demand of each EV is 10 kWh.
6) Minimal and maximal charging power of each EV are 0

and 10 kW, respectively.
7) The charging efficiency is set to be 1.0.
8) The optimization time interval is 1 hour.
9) The upper and lower voltage limits are 1.0 and 0.9 p.u.,

respectively.
2) Simulation Results: All the programs are written with

MATLAB. The LP is solved by using the library function
linprog. The precise model is solved by the primal dual interior
point method [27]. The CPU of the computer is Intel (R) Core
(TM) i3-4510. The main frequency of the CPU is 3.5 GHz
with 32G RAM.

Some results are shown in Table III and Table IV, where f.0
and f.1 represent the optimization results during 12:00∼13:00
and 13:00∼14:00 solved by the simplified LP, respectively.
PM.0 and PM.1 represent the optimization results during
12:00∼13:00 and 13:00∼14:00 solved by the approximate

TABLE I
LINE IMPEDANCE OF IEEE 33-NODE DISTRIBUTION NETWORK

Line i∼j
Zaa

(Ω)
Zbb

(Ω)
Zcc

(Ω)
Zab

(Ω)
Zac

(Ω)
Zbc

(Ω)

33∼1 Real 0.0935 0.0933 0.0931 0.0009 0.0013 0.0011
Imag 0.0477 0.0475 0.0474 0.0004 0.0007 0.0005

1∼2 Real 0.5003 0.4989 0.4979 0.0049 0.0073 0.0059
Imag 0.2548 0.2541 0.2536 0.0025 0.0037 0.0030

2∼3 Real 0.3714 0.3704 0.3696 0.0036 0.0054 0.0043
Imag 0.1891 0.1886 0.1882 0.0018 0.0027 0.0022

3∼4 Real 0.3868 0.3856 0.3849 0.0038 0.0057 0.0045
Imag 0.1970 0.1964 0.1960 0.0019 0.0029 0.0023

4∼5 Real 0.8312 0.8288 0.8271 0.0081 0.0122 0.0098
Imag 0.7176 0.7154 0.7140 0.0070 0.0106 0.0084

5∼6 Real 0.1900 0.1894 0.1890 0.0018 0.0028 0.0022
Imag 0.6280 0.6262 0.6249 0.0061 0.0092 0.0074

6∼7 Real 0.7220 0.7199 0.7185 0.0071 0.0106 0.0085
Imag 0.2386 0.2379 0.2374 0.0023 0.0035 0.0028

7∼8 Real 1.0454 1.0423 1.0403 0.0103 0.0154 0.0123
Imag 0.7510 0.7488 0.7473 0.0074 0.0110 0.0088

8∼9 Real 1.0596 1.0565 1.0544 0.0104 0.0156 0.0125
Imag 0.7510 0.7488 0.7473 0.0074 0.0110 0.0088

9∼10 Real 0.1995 0.1989 0.1985 0.0019 0.0029 0.0023
Imag 0.0659 0.0657 0.0656 0.0006 0.0009 0.0007

10∼11 Real 0.3800 0.3788 0.3781 0.0037 0.0056 0.0044
Imag 0.1256 0.1252 0.1250 0.0012 0.0018 0.0014

11∼12 Real 1.4900 1.4856 1.4826 0.0146 0.0220 0.0176
Imag 1.1723 1.1688 1.1665 0.0115 0.0173 0.0138

12∼13 Real 0.5497 0.5480 0.5470 0.0054 0.0081 0.0064
Imag 0.7235 0.7214 0.7200 0.0071 0.0106 0.0085

13∼14 Real 0.5998 0.5980 0.5969 0.0059 0.0088 0.0070
Imag 0.5338 0.5323 0.5312 0.0052 0.0078 0.0063

14∼15 Real 0.7514 0.7491 0.7477 0.0074 0.0111 0.0088
Imag 0.5531 0.5515 0.5544 0.0054 0.0081 0.0065

15∼16 Real 1.3083 1.3044 1.3018 0.0128 0.0193 0.0154
Imag 1.7468 1.7416 1.7382 0.0172 0.0258 0.0206

16∼17 Real 0.7429 0.7407 0.7393 0.0073 0.0109 0.0087
Imag 0.5826 0.5808 0.5797 0.0057 0.0086 0.0068

17∼18 Real 0.1664 0.1659 0.1656 0.0016 0.0024 0.0019
Imag 0.1588 0.1583 0.1580 0.0015 0.0023 0.0018

18∼19 Real 1.5267 1.5222 1.5192 0.0150 0.0225 0.0180
Imag 1.3757 1.3716 1.3689 0.0135 0.0203 0.0162

19∼20 Real 0.4156 0.4144 0.4135 0.0040 0.0061 0.0049
Imag 0.4855 0.4841 0.4831 0.0047 0.0071 0.0057

20∼21 Real 0.7195 0.7174 0.7159 0.0070 0.0106 0.0085
Imag 0.9513 0.9485 0.9466 0.0093 0.0140 0.0112

21∼22 Real 0.4579 0.4566 0.4557 0.0045 0.0067 0.0054
Imag 0.3129 0.3119 0.3113 0.0030 0.0046 0.0036

22∼23 Real 0.9114 0.9087 0.9069 0.0089 0.0134 0.0107
Imag 0.7197 0.7176 0.7161 0.0070 0.0106 0.0085

23∼24 Real 0.9094 0.9067 0.9049 0.0089 0.0134 0.0107
Imag 0.7116 0.7095 0.7081 0.0070 0.0105 0.0084

24∼25 Real 0.2060 0.2054 0.2050 0.0020 0.0030 0.0024
Imag 0.1049 0.1046 0.1044 0.0010 0.0015 0.1044

25∼26 Real 0.2884 0.2876 0.2870 0.0028 0.0042 0.0034
Imag 0.1468 0.1464 0.1461 0.0014 0.0021 0.0017

26∼27 Real 1.0748 1.0717 1.0695 0.0105 0.0158 0.0127
Imag 0.9477 0.9449 0.9430 0.0093 0.0140 0.0112

27∼28 Real 0.8162 0.8138 0.8122 0.0080 0.0120 0.0096
Imag 0.7111 0.7090 0.7076 0.0070 0.0105 0.0084

28∼29 Real 0.5151 0.5135 0.5125 0.0050 0.0076 0.0060
Imag 0.2623 0.2616 0.2610 0.0025 0.0038 0.0031

29∼30 Real 0.9890 0.9860 0.9841 0.0097 0.0146 0.0116
Imag 0.9774 0.9745 0.9726 0.0096 0.0144 0.0115

30∼31 Real 0.3151 0.3142 0.3136 0.0031 0.0046 0.0037
Imag 0.3637 0.3662 0.3655 0.0036 0.0054 0.0043

31∼32 Real 0.3461 0.3450 0.3444 0.0034 0.0051 0.0040
Imag 0.5381 0.5365 0.5355 0.0053 0.0079 0.0063

LP, respectively. PD.0 and PD.1 represent the optimization
results during 12:00∼13:00 and 13:00∼14:00 solved by the
precise nonlinear model, respectively. Pf.0 and Pf.1 represent
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TABLE II
LOAD OF IEEE 33-NODE DISTRIBUTION SYSTEM

Node Phase A [kW] Phase B [kW] Phase C [kW]
1 32 + 19i 33 + 20i 35 + 21i
2 30 + 13i 31 + 15i 29 + 13i
3 45 + 30i 0 + 0i 35 + 24i
4 20 + 10i 20 + 10i 20 + 10i
5 20 + 6i 20 + 7i 20 + 7i
6 65 + 33i 70 + 34i 65 + 33i
7 70 + 34i 65 + 33i 65 + 33i
8 20 + 7i 18 + 6i 22 + 7i
9 21 + 7i 20 + 7i 0+ 0i

10 14 + 9i 16 + 11i 15 + 10i
11 20 + 11i 20 + 12i 20 + 12i
12 21 + 12i 19 + 11i 20 + 12i
13 40 + 28i 38 + 27i 42 + 25i
14 0 + 0i 19 + 3i 20 + 3i
15 19 + 6i 20 + 7i 21 + 7i
16 19 + 6i 21 + 7i 20 + 7i
17 30 + 14i 30 + 13i 30 + 13i
18 33 + 15i 29 + 13i 28 + 12i
19 29 + 13i 28 + 12i 33 + 15i
20 29 + 12i 30 + 13i 31 + 15i
21 28 + 12i 33 + 15i 29 + 13i
22 30 + 16i 31 + 17i 29 + 17i
23 130 + 60i 140+ 70i 150+ 70i
24 150+ 70i 130+ 70i 140+ 60i
25 20 + 8i 20 + 8i 20 + 9i
26 18 + 7i 22 + 9i 20 + 9i
27 19 + 6i 22 + 8i 19 + 6i
28 38 + 23i 42 + 25i 40 + 22i
29 60 + 180i 70 + 210i 70 + 210i
30 45 + 20i 51 + 23i 54 + 27i
31 70 + 33i 72 + 35i 68 + 32i
32 20 + 13i 20 + 14i 20 + 13i

TABLE III
OPTIMAL CHARGING POWER FOR DIFFERENT METHODS IN CASE 1

Nodes 17 21 24. 32 Computational
Time [s]

f.0 [kW] 56.8 0 0 0 0.130f.1 [kW] 343.2 400 400 400
PM.0 [kW] 111 0 0 0 0.198PM.1 [kW] 289 400 400 400
PD.0 [kW] 111.4 0 0 0 8.295PD.1 [kW] 288.6 400 400 400

voltages of power flow calculations during 12:00∼13:00 and
13:00∼14:00, by substituting the optimal charging power of
EVs using the simplified LP into the precise power flow equa-
tions, respectively. PF.0 and PF.1 represent voltages of power
flow calculations during 12:00∼13:00 and 13:00∼14:00, by
substituting the optimal charging power of EVs using the
approximate LP into the precise power flow equations, respec-
tively.

As can be seen in Table III and Table IV, the results
obtained by the simplified and approximate LP are relatively
close. Thus, the result is of high precision via the initial point
obtained by the simplified LP for linearizing the nonlinear
terms of branch flow equations. Moreover, the optimization
results obtained by the approximate LP are very close to those
of the primal dual interior point method. This observation
demonstrates that the proposed method has a high precision.
However, the computational speed of the proposed method is
about 40 times higher than that of the primal dual interior
point method. As can be seen from the results of power flow

TABLE IV
OPTIMAL VOLTAGES FOR DIFFERENT METHODS IN CASE 1

Nodes 17 21 24 32

f.0 [p.u.]
0.9168 0.9921 0.9704 0.9229
0.9120 0.9917 0.9707 0.9172
0.9137 0.9916 0.9702 0.9195

f.1 [p.u.]
0.9041 0.9858 0.9663 0.9148
0.9000 0.9854 0.9665 0.9099
0.9016 0.9854 0.9661 0.9124

PM.0 [p.u.]
0.9099 0.9919 0.9693 0.9194
0.9044 0.9914 0.9695 0.9131
0.9064 0.9914 0.9690 0.9158

PM.1 [p.u.]
0.9045 0.9855 0.9653 0.9122
0.9000 0.9851 0.9655 0.9069
0.9017 0.9851 0.9651 0.9096

PD.0 [p.u.]
0.9098 0.9919 0.9693 0.9194
0.9043 0.9914 0.9695 0.9131
0.9063 0.9914 0.9690 0.9157

PD.1 [p.u.]
0.9045 0.9856 0.9654 0.9122
0.9000 0.9851 0.9655 0.9069
0.9017 0.9851 0.9651 0.9096

Pf.0 [p.u.]
0.9142 0.9919 0.9695 0.9203
0.9087 0.9915 0.9697 0.9140
0.9107 0.9914 0.9692 0.9167

Pf.1 [p.u.]
0.9000 0.9855 0.9651 0.9113
0.8954 0.9851 0.9653 0.9059
0.8971 0.9851 0.9649 0.9086

PF.0 [p.u.]
0.9098 0.9919 0.9693 0.9194
0.9043 0.9914 0.9695 0.9131
0.9063 0.9914 0.9690 0.9157

PF.1 [p.u.]
0.9045 0.9856 0.9654 0.9122
0.9000 0.9851 0.9655 0.9068
0.9017 0.9851 0.9651 0.9096

calculation in Table IV, the optimal charging power obtained
by the simplified LP may result in voltages dropping out of the
lower limit (see the bold font). However, for the approximate
LP, voltage results of the power flow calculation are very close
to those of the optimization results. Furthermore, all of the
voltages are within the rated range.

B. Case 2

1) Simulation Conditions: In this case, all the EVs are
assumed to adopt the single-phase charging mode to testify the
capabilities of the proposed method. The simulation platform
is the same as that of case 2 in [28]. Time-of-use electricity
prices are set as 0.8, 0.4 Yuan/kWh during 12:00∼13:00
and 13:00∼14:00, respectively. The conventional household
loads at each node of each phase are 4.5 and 3.6 kW during
12:00∼13:00 and 13:00∼14:00, respectively. The charging
demand of each EV is 5 kWh. The maximum charging power
is 4 kW. Other simulation conditions are set as same as those
of case 2 in [28].

2) Simulation Results: All the programs are written with
MATLAB. The simplified and approximate LP is solved using
library function linprog. The precise model is solved by
the primal dual interior point method [27]. The computer
configuration is the same as that in case 1. Simulation results
of different optimization algorithms are shown in Table V
and Table VI. It can be seen that results of the proposed
method are in good agreement with those of the primal dual
interior point method. However, the computational speed is
significantly superior to the primal dual interior point method.
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TABLE V
OPTIMAL CHARGING POWER FOR DIFFERENT METHODS IN CASE 2

Nodes 6 7 11 12 Computational
Time [s]

f.0 [p.u.] 0.0188 0.0188 0.0188 0.0188 0.103f.1 [p.u.] 0.0750 0.0750 0.0750 0.0750
PM.0 [p.u.] 0.0188 0.0188 0.0188 0.0188 0.161PM.1 [p.u.] 0.0750 0.0750 0.0750 0.0750
PD.0 [p.u.] 0.0188 0.0188 0.0188 0.0188 1.390PD.1 [p.u.] 0.0750 0.0750 0.0750 0.0750

TABLE VI
OPTIMAL VOLTAGE FOR DIFFERENT METHODS IN CASE 2

Nodes 6 7 11 12

f.0 [p.u.]
0.9285 0.9358 0.9338 0.9348
0.9378 0.9428 0.9429 0.9404
0.9334 0.9429 0.9396 0.9418

f.1 [p.u.]
0.9187 0.9260 0.9231 0.9263
0.9554 0.9539 0.9595 0.9489
0.9382 0.9543 0.9464 0.9545

PM.0 [p.u.]
0.9216 0.9290 0.9270 0.9280
0.9322 0.9373 0.9375 0.9349
0.9275 0.9371 0.9338 0.9360

PM.1 [p.u.]
0.9093 0.9167 0.9138 0.9171
0.9516 0.9501 0.9557 0.9448
0.9329 0.9493 0.9414 0.9495

PD.0 [p.u.]
0.9209 0.9284 0.9263 0.9273
0.9317 0.9368 0.9370 0.9344
0.9271 0.9367 0.9334 0.9357

PD.1 [p.u.]
0.9082 0.9157 0.9128 0.9160
0.9512 0.9497 0.9553 0.9444
0.9331 0.9494 0.9415 0.9496

PF.0 [p.u.]
0.9215 0.9289 0.9269 0.9278
0.9318 0.9370 0.9370 0.9346
0.9274 0.9369 0.9337 0.9358

PF.1 [p.u.]
0.9082 0.9157 0.9128 0.9160
0.9512 0.9497 0.9553 0.9444
0.9331 0.9494 0.9415 0.9496

C. Case 3

1) Simulation Conditions: In this case, the coexistence of
the single- and three-phase charging modes for EVs in the
distribution system to test the capabilities of the proposed
method. Simulation conditions are the same as those in case 2
except that EVs connected to nodes 3, 4, 5, 8, 9, and 10 adopt
the three-phase charging mode and the maximum charging
power of each EV is 12 kW.

2) Simulation Results: The optimal charging power of EVs
at different nodes with different algorithms and the computa-
tional time of the program are shown in Table VII. As can be
seen, the computational efficiency of the proposed method is
slightly better than that of case 2. This is because we choose
the total power rather than the single-phase charging power
for EV with the three-phase charging mode as the optimization
variable. The charging power of each phase is one-third of this
variable. That is, with some simple mathematical techniques,
the number of optimization variables, equality and inequality
constraints can be the same as those in case 2. The imbalance
of the distribution system is reduced compared with that of
case 2 due to the existence of three-phase charging mode.
Thus, the numerical stability of the program is improved and
the computational speed is slightly higher than that of case 2.
The voltage results using different optimization algorithms are

TABLE VII
OPTIMAL CHARGING POWER FOR DIFFERENT METHODS WITH SINGLE-

AND THREE-PHASE CHARGING COEXISTING

Nodes 5 6 10 11 Computational
Time [s]

f.0 [p.u.] 0.0000 0.0188 0.0000 0.0188 0.093f.1 [p.u.] 0.0939 0.0750 0.0939 0.0750
PM.0 [p.u.] 0.0000 0.0188 0.0000 0.0188 0.150PM.1 [p.u.] 0.0939 0.0750 0.0936 0.0750
PD.0 [p.u.] 0.0000 0.0188 0.0000 0.0188 1.397PD.1 [p.u.] 0.0936 0.0750 0.0936 0.0750
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Fig. 4. Computational efficiency with different methods.

similar with those in Table VI. Based on simulation results,
we can draw the same conclusions as case 2.

The computational time of aforementioned three cases with
different optimization methods are shown in Fig. 4. As can
be seen, the calculation efficiency of the proposed method
is significantly better than that of the primal dual interior
point method and slightly worse than that of the simplified
LP. However, the precision is very close to the primal dual
interior point method.

D. Case 4

1) Simulation Conditions: A 354-node distribution system
is used to test the capabilities of the proposed method. As
shown in Fig. 5, the MV distribution system is a 34-node
distribution system and the rated phase to ground voltage is
13.8 kV. There are 16 low voltage (LV) distribution systems in
the simulation platform. The topology of each one is shown in
Fig. 6. The rated phase-to-ground voltage is 220 V. In Fig. 6,
the capacity of the transformer is 250 kVA and the terminal
node ‘xx’ is connected to the MV distribution system at nodes
11, 13, 14, 17, 18, 20, 22, 24-26, and 28-33, respectively. The
rated currents of the cables in the MV and LV distribution
networks are 200 A and 368 A, respectively. There is a
conventional household load connected to each node in the LV
distribution system and each household has one EV connected.
Node 34 is taken as the slack node and its voltage is kept to
be 1.1 p.u.. The rest of nodes are taken as PQ nodes. The
single-phase base power and voltages are chosen to be 1000
kVA, 13.8 kV and 0.22 kV, respectively. The back forward
sweep method is used to calculate the power flow.
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Fig. 6. LV distribution system.

Other simulation conditions are set as follows:
1) All EV owners are willing to participate in the coor-

dinated charging and charging power of each EV is fully
controllable. The charging time period is between 18:00∼8:00.

2) The conventional house hold load at each node is set to
be the same.

3) At 18:00∼19:00, the conventional household load con-
nected to phases A, B, C are 0.8666, 0.8000, and 0.7334 kW,
respectively. Power factor is set to be 0.95. The conventional
household load model is set to be 60% constant power load
plus 40% constant impedance load.

4) All EV adopt three-phase charging mode.
5) Charging demand of each EV is 15 kWh.
6) Minimal and maximal charging power of each EV is 0

and 10 kW, respectively.
7) Charging efficiency is set to be 1.0.
8) The optimization time interval is 1 hour.
9)The upper and lower voltage limits are 1.1 and 0.9 p.u.,

respectively.
2) Simulation Results: We utilize MATLAB to call the

cplex LP library function cplexlp for the optimization calcula-
tion. The configuration of computer is the same as that in case
1. During the optimization period, the total conventional load
and charging load obtained by the simplified and approximate
LP are denoted as blue, orange, and yellow boxes, respectively,
as shown in Fig. 7. As can be seen, all of EVs are only charged
during 4:00∼6:00, when the electricity prices are relatively
low. However, the total charging power difference between
the simplified and approximate LP is significant. Moreover,
since the lowest electricity price and conventional load level
occur during 5:00∼6:00, the total charging load is the maximal
during 5:00∼6:00. The electricity price during 4:00∼5:00 is
higher than that during 6:00∼7:00. The total charging load
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Fig. 7. Total load at different time periods.

during 4:00∼5:00 is much lower than that during 6:00∼7:00.
This is because most of the charging loads are supplied during
5:00∼7:00 by the optimization programming.

Let the cable connected with the root node of the distribu-
tion system and that connected with the LV side of the trans-
former be called the MV and LV main cables, respectively.
The loading of the MV and LV main cables and transformer
for phase A are shown in Fig. 8. Clearly, the loadings of
transformer and cables are low when the electricity price is
high. Because EVs are not charged when the electricity price
is high. Otherwise, the loadings of transformer and cables
are high when the electricity price is low. Because EVs are
charged with high power when the electricity price is low.
During 5:00∼6:00, since the electricity price is minimal, the
total charging power of EV is maximal. As a result, the
loadings of transformer and main cable are the largest during
5:00∼6:00. However, under both circumstances, the loadings
of transformer and cables are not more than 90%. The capacity
of the distribution system equipments is more than sufficient to
accommodate the charging load. Moreover, the branch flows
obtained by the simplified and approximate LP are very close.
Thus, it is reasonable to take the results obtained by the
simplified LP as the initial point for linearizing the nonlinear
terms of the branch flow equations.

Both minimum voltages of each time period obtained by
the simplified and approximate LP are shown in Fig. 9a.
Compared with Fig. 7, both the minimum voltages are high
when the total load is low. Otherwise, the minimum voltages
are low when the total load is high. The minimum voltage is
always within the rated range during the optimization time
periods. The minimum voltages of power flow calculation
results using the optimal charging power obtained by the
simplified and approximate LP are shown in Fig. 9b. Since
the voltage and power losses are ignored in the simplified LP,
the minimum voltage of the power flow calculation drops to
0.8651 p.u. and 0.8659 p.u. during 5:00∼6:00 and 6:00∼7:00,
respectively. Thus, the optimal charging power obtained by the
simplified LP is not able to meet the node voltage constraint.
That is, the optimal charging power obtained by simplified
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Fig. 8. Loadings of electric equipments on phase A.
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LP may be unfeasible. As the voltage constraint has been
loosened, too many EVs are charged with high power during
the lowest electricity price time periods during 5:00∼6:00 and
6:00∼7:00 by simplified LP. However, based on the optimal
charging power obtained by the approximate LP, the minimum
voltages during 5:00∼6:00 and 6:00∼7:00 are 0.8963 p.u.
and 0.8975 p.u., respectively. This result can approximately
meet the node voltage constraint. Overall, this observation can
demonstrate that the proposed linearization strategy has a high
precision.

The optimal charging power of EVs that are nearest and
farthest from the root node is shown in Fig. 10. When the
electricity price is low during 4:00∼7:00, the charging power
is close to its maximum value. When the electricity price is
high during 18:00∼3:00 and 7:00∼8:00, the charging power is
zero. Since EVs nearest from the root node are charged with
the maximum power at the lowest price during 5:00∼7:00,
those farthest from the root node can be charged at the
maximum power during 4:00∼5:00 when the conventional
load level is the lowest rather than 5:00∼7:00. Thus, voltages
cannot drop out of the lower limit. The charging power of
EV is determined firstly by electricity price and then by
charging location. Although the electricity is the lowest during
5:00∼6:00, the charging power of the EV farthest from the
root node is zero. This is because too many EVs in front of it
have been charged with high power. In a conclusion, in order
not to exceed the voltage magnitude limit, charging power of
EVs at the end of distribution systems sometimes must be
charged with low power during low electricity price.
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Fig. 10. Optimal charging power of EVs in the distribution system.

3) Comparison with Selected Method: As can be seen in
Fig. 7–Fig. 10, all the EVs are only charged during 4:00∼7:00
and the charging power is zero during other time periods.
Thus, for the third and forth steps in Fig. 2, the linearization
and optimization time periods can be reduced to 4:00∼7:00.
Hence, the computational speed can be further improved. The
optimization results of the proposed method are compared with
those in [16] and shown in Table VIII. As can be seen, the
computational speed of the proposed method is much faster
than that of [16]. This is because the model formulated in this
paper is based on the branch flow equation. The optimization
variables do not contain the branch current and the phase angle
of the node voltage. However, the model in [16] adopts the
current type power flow equation in the Cartesian coordinate
system. Many variables and constraints are introduced to lin-
earize the branch current constraint. The number of variables
in [16] is several times of the proposed model. The number
of branch current and node voltage constraints in [16] is more
than 10 times and 5 times of the proposed method. This results
in a significant increase of the computational time. In addition,
discrete variables are also introduced in [16] and makes the
model non-convex. Also, this can significantly increase the
total computational time.

VII. CONCLUSIONS AND DISCUSSION

In this paper, branch flow equations of balanced and un-
balanced distribution systems are derived. The model for
coordinated charging of EVs is proposed to minimize the
total charging cost of holders. The charging demand, three-

TABLE VIII
COMPARISON WITH THE MODEL IN [16]

Metrics Method
in [16]

Proposed Method
Second Stage

Within 14 hours
Second Stage

Within 3 hours
Objective

Function [Yuan] 850.64 848.92 848.92

Minimum
Voltage [p.u.] 0.90 0.90 0.90

Computational
Time [s] 1360 212 114

phase imbalance of distribution network, voltage and power
flow constraints are considered. The linearization method is
proposed for nonlinear terms of branch flow equations to
develop a fast solving strategy. Via linearizing nonlinear terms
of branch flow equations, the first stage linear programming
(LP) is formulated to calculate the estimated branch power
and node voltages as initial points. The second stage LP is
formulated to calculate the optimal charging power based on
linearized branch flow equations. Both the high computational
speed and precision of the proposed method are verified by two
case studies. The fast calculation speed and high precision of
the proposed method are verified by four test cases as shown
in Tables III–VIII, Fig. 4, and Fig. 9.

In this paper, the simulation time interval is set to 1 hour.
Considering the practical application, it should be highlighted
that it can be reduced to 15 minutes or even 3 to 5 minutes.
Therefore, forecasting precision can be improved and uncer-
tainties of EVs and conventional load can be considered by
using online rolling optimization and fast charging EVs can
be taken into account so as to avoid voltage beyond lower
limit and branch overloading caused by fast charging of EVs.
Under this circumstance, the capability of fast computational
speed of the proposed method can be further reflected. This
is because the computational speed of the proposed method
is just slightly slower than that of the conventional LP. The
proposed method is also applicable to other objective functions
such as minimization of network losses or total electricity costs
of distribution system operator.

The main contribution of this paper is that we have proposed
a fast solution method for EVCC problem. All simulation
systems are based on actual or IEEE standard distribution
networks. The setting of other simulation conditions is also
reasonable, which can fully demonstrate the effectiveness
of the proposed method. The simulation conditions in case
4 are almost the same as those in reference [16], but the
calculation speed is much faster than that in reference [16].
Four simulation cases in this paper show that the proposed
method has excellent capabilities - high accuracy and fast
speed. Even if the access and departure time and charging
demand of EVs are changed, the proposed method is still
applicable. In future work, more realistic EV user behavior
and laboratory scale testing will be carried out to validate the
capabilities of the proposed method.

In future work, the proposed method can also be applicable
to other objective functions, such as the minimization of
network losses and total electricity cost for distribution system
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operators.
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